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Critical exponents and universal amplitude ratios in lattice trees
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Lattice trees are generated by a cut-and-paste algorithm to collect data to estimate critical exponents. We are
particularly interested in the effects of corrections to scaling on the estimated values of the exponents and we
find that a sizable systematic error is introduced if corrections are ignored. Indeed, our final error bars are
largely due to systematic errors~which we estimate by using different empirical finite size formulas as models
for our data!, while statistical error bars contribute only a small fraction. This fact suggests that the estimate of
a critical exponent for lattice trees by fitting Monte Carlo data to an empirical finite size formula may ignore
a sizable systematic error. The exponentsn andr are estimated in dimensions 2–7. In addition, the exponent
D ~associated with confluent corrections! is estimated and the universal amplitude ratios associated with scaling
in the mean square radius of gyration and the mean span and with the mean longest path and mean branch size
are computed.@S1063-651X~98!05209-X#

PACS number~s!: 02.70.Lq, 64.90.1b
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I. INTRODUCTION

The numerical and theoretical study oflattice treespro-
vides a natural model for calculating the properties
branched polymers in dilute solution. Lattice trees belong
the same universality class as lattice animals@1–3# and the
critical exponents of lattice trees will therefore be the sa
as for lattice animals. In this same universality class are s
critical percolation clusters@4#. For a description of the phas
diagram of interacting lattice trees and animals see the w
of Gaunt and Flesia@5#, Flesia and Gaunt@6#, Flesiaet al.
@7#, Janse van Rensburg and Madras@8#, and Madras and
Janse van Rensburg@9#.

Lattice trees are connected acyclic subgraphs of the
tice, with vertices representing monomers and edges
bonds between monomers. There are powerful Metrop
Monte Carlo algorithms for the simulation of lattice trees@8#
and these can be used to estimate some observables a
ated with a uniformly weighted ensemble of lattice trees
fixed number of vertices. In particular, one may wish to
timate the ‘‘mean size’’ of a tree or make estimates of qu
tities that measure the internal structure of a tree~such as the
number of edges in a longest path!. The size of a lattice tree
can be measured in several ways. We used the follow
observables to estimate the size of lattice trees~all averages
are over uniformly weighted lattice trees with a fixed numb
of vertices and we assume that the tree containsn vertices!.

~i! The mean square radius of gyration of a lattice tree
defined by

Rn
25

1

n (
i 51

n

@r ~v i !2r c#
2,

wherer (v i) is the position vector of thei th vertex of the tree
andr c is the position vector of the center of mass of the tr
The ensemble average^Rn

2& is the uniform mean ofRn
2 over

all trees withn vertices.
~ii ! The mean span of a lattice tree is defined by
PRE 581063-651X/98/58~3!/3971~6!/$15.00
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1< i , j <n

uxk~v i !2xk~v j !u,

wherexk(v i) is the kth coordinate of thei th vertex in the
tree.

The intrinsic structure of a lattice tree may be imagined
the longest path~in the tree!, decorated with ‘‘branches.’’
The mean sizes of the longest path and branches can als
observed; we define these by the following.

~a! A path Pi j with first and last verticesv i and v j in a
lattice tree is the shortest walk in the tree from vertexv i to
vertexv j . The longest path is defined by

Pn5max
i , j

$uPi j u%,

whereuPi j u is the number of edges in the shortest walk fro
vertex i to vertexj @17,18#.

~b! Let e be an edge in a treeT; thenT-e consists of two
subtrees~one can be a single vertex!, the smaller of these is
called a branch. The number of edges in the branch is
size, denotedBn . The ensemble average^Bn& is the uniform
average over all possible choices ofe in T and over all lattice
trees.

The end-to-end~Euclidean! distance of the longest pat
should yet define another quantity that can be used to de
a size of the tree; this distance should also define a len
scale in the tree and we define it as follows. LetPi j be the
longest path in the treeT and let its end vertices bev i and
v j . The end-to-end distance of the longest path in the tre
the Euclidean distance betweenv i andv j :

En5ir ~v i !2r ~v j !i2 .

It is commonly accepted that these quantities scale witn
as

^Rn
2&;n2n, ^Sn&;^En&;nn, ~1!
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^Pn&;nr, ^Bn&;ne, ~2!

wheren, r, and e are critical exponents. It is believed th
r5e and we will accept this as fact in this paper@10#. The
exponentn is the metric exponent. It has value1

2 in three
dimensions@11# and its mean field value is14 @12#. The ex-
ponentr has the mean field value12 @10#.

II. ESTIMATING THE CRITICAL EXPONENTS

In this paper we examine the above scaling relations
dimensions 2–7 using the Monte Carlo approach for lat
trees developed in the paper by Janse van Rensburg and
dras@10#. In particular, we are interested in obtaining hig
quality estimates ofn andr from the expressions in Eqs.~1!
and ~2!, as well as estimates of the eigenvalues of the m
square radius of gyration tensor. We will indicate the me
eigenvalues of this tensor by^l i&, wherei 51 will indicate
the largest andi 5d the smallest ind dimensions. The deter
minant of this matrix also scales withn: in d dimensions it
should scale asn2dn and we will collect data on it as well. In
the second instance, we will also be interested in the uni
sal amplitude ratios for lattice trees, in particular, we w
consider ratios of the general form

K Zn

Yn
L ,

^Zn&

^Yn&
, ~3!

where Zn and Yn will be observables of lattice trees me
sured by the algorithm with the same scaling exponents.
will be mostly interested in cases whereZn5Sn

2 with Yn

5Rn
2 and Zn5Pn with Yn5Bn . In addition, we will also

consider ratios involving other quantities, such as^En& and
the mean largest eigenvalue of the radius of gyration ma
^l1&.

We sampled along a Markov chain in the state space
lattice trees~uniformly weighted! using a cut-and-paste algo
rithm in two to seven dimensions@10#, while we collected
data on the mean square radius of gyration, the mean s
the mean end-to-end distance of the longest path, the m
longest path, the mean branch size, the mean square rad
gyration matrix, and its mean largest eigenvalue. Runs w
performed on trees of sizes fromn525 to 2000 edges, while
data were taken everyn steps for a sample size of 50 00
~thus a total of 50 000n attempted iterations of the algorithm
was performed for each value ofn!. Our immediate motiva-
tion is to obtain high-quality data for the estimation of t
critical exponentsn andr in dimensions 2–7. In the case o
the exponentn we will attempt to obtain estimates for com
parison with the results from series analysis of animals@13#
and Monte Carlo of lattice trees in dimensions 2–4@10#. In
the case of the exponentr we hope to improve on the resul
in two to four dimensions in@10# and to compute the valu
of this exponent in dimensions 5–7.

Estimates of exponents from data collected by samp
along a Markov chain with a Metropolis Monte Carlo alg
rithm is usually done by assuming a model that accounts
finite size corrections to scaling~and based on some theore
ical insights gained from scaling theory or the renormali
tion group!. Within the reference frame of the assum
model, a least-squares analysis can be used to find best
n
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mators for the parameters in the model, including the ex
nents, and if the autocorrelation time of the Markov chain
known, then a statistical confidence interval can be assig
~see the appendix in Ref.@19# for details!. On the other hand
the results from such an analysis are conditioned on the
sumed model and a different model may give a different b
estimate. This observation is indicative of the presence o
systematic error in the best estimate and if we knew
correct model, then it would be possible to correct for it.
our case, this is not possible and we had to find a way
estimating a systematic error in our estimates by trying a
related, but different, models~each of which accounts fo
finite size effects in a different way!. The absolute maximum
difference in the results from the different models will b
assumed to indicate the size of a possible systematic er

It is known that a ‘‘confluent correction’’ is present in th
scaling assumptions in Eqs.~1! and ~2! and we will pay
particular attention to the effect this confluent correction m
have on the values of estimated exponents. The conflu
correction modifies Eq.~1! to ^Rn

2&5An2n(11Bn2D),
whereD is the confluent exponent. The exponents and a
plitudes were estimated using a weighted least-squ
analysis: We tracked the least-squares error~which is distrib-
uted as ax2 statistic! as a measure of goodness of fit, whi
we discarded data points at the smallest values ofn. We
accepted a fit as good if thex2 statistic is acceptable at th
95% level. We tried this procedure for several models,
cluding

log^Rn
2&5 log A12n log n, ~4!

log^Rn
2&5 log A12n log n1Bn20.5, ~5!

log^Rn
2&5 log A12n log n1Bn2D. ~6!

The first two models@Eqs.~4! and~5!# are linear models tha
can be solved using standard numerical procedures~in the

TABLE I. Estimates of metric exponentn(R2), n(S), and
n(E).

d n(R2) n(S) n(E)

2 0.6375~10!~64! 0.6500~14!~200! 0.6458~13!~56!

3 0.4932~10!~65! 0.5111~13!~180! 0.4970~10!~35!

4 0.4102~10!~74! 0.4342~12!~240! 0.4101~10!~49!

5 0.3519~10!~29! 0.3851~15!~280! 0.3528~10!~35!

6 0.3124~10!~53! 0.3527~22!~420! 0.3149~10!~110!
7 0.2866~10!~84! 0.3000~10!~16! 0.2897~15!~140!

TABLE II. Estimates of metric exponentn(l1) andn(det).

d n(l1) n~det!

2 0.6372~11!~58! 0.6378~12!~52!

3 0.4936~10!~86! 0.4926~10!~55!

4 0.4109~13!~19! 0.4069~10!~21!

5 0.3521~12!~84! 0.3516~10!~23!

6 0.3098~11!~190! 0.3148~10!~99!

7 0.2857~10!~68! 0.2946~10!~180!
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second model we assumed thatD50.5). The third model
required a nonlinear analysis, which was done using a qu
Newton procedure, withD a parameter of the model. Th
absolute differences in the estimates of exponents and am
tudes from these analysis were used as estimates of a
tematic error in our results~and is presumably due to corre
tions to scaling that our models could not account for!. The
best estimates for exponents and amplitudes were taken
successful two-parameter fits, with their associated co
dence intervals. Our analysis could not in any case settle
a consistent value for the exponentD and we will assume
that only an effective exponent is observed~the values ofD
varied between 0.35 and 0.75 in two dimensions, encomp
ing the estimates in the work by Margolina, Family, a
Privman@14#, Adler et al. @13#, Ishinabe@15# and Gonc¸alves
@16#!. Our estimates forn are tabled in Table I. Each entry i
presented as the best estimate~statistical error!~systematic er-
ror!.

The exponentn can also be obtained by analyzing da
obtained from the largest eigenvalue of the radius of gyra
matrix or from its determinant. We analyzed these meas
ments similarly to the data presented in Table I and we
our results in Table II. It turned out to be significantly mo
difficult to find satisfactory fits to the determinant of th
radius of gyration matrix: Indeed, we were generally una
to find satisfactory~acceptable at the 95% level! four-
parameter fits to Eq.~6! in this case.@This is perhaps no
surprising; the analysis using Eq.~6! is a four-parameter
nonlinear model and involves a numerical procedure t

TABLE III. Best estimates of metric exponentn.

d nd

2 0.64260.010
3 0.49860.010
4 0.41560.011
5 0.35960.011
6 0.32160.019
7 0.29160.011
si-
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e

t

searches a four-dimensional parameter space for a gl
minimum in the least-squares error. Since the param
space is so large, one may expect that the procedure
have difficulty converging to a global minimum, especially
there are random statistical uncertainties in the data produ
by the the Monte Carlo simulation.#

The three models produced different estimates forn, as is
apparent in Tables I and II. Indeed, this model depende
illustrates the inadequacy of these models in determiningn;
in particular, corrections to scalingare important in deter-
mining n and ignoring them introduces a systematic er
that oftenexceedsthe statistical errors computed from th
regressions. We draw attention to this since the standard
proach to estimating exponents from numerical data of
focuses on only one model for a single quantity~such as the
end-to-end length!. While this approach is often out of ne
cessity, it is clearly inadequate if a ‘‘true’’ error bar is to b
assigned.

The exponentn was also computed by Gonc¸alves by the
Monte Carlo method (n50.63760.010) @16#. Our statistical
error bars are roughly a factor of 10 better than this, but
systematic errors in Tables I and II are roughly compara
to this error. Estimates ofn in dimensions 2–7 were als
made by Adleret al. @13# using a series analysis for lattic
animals. Our statistical confidence intervals are also roug
a factor of 10 smaller than the results in that paper, and if
combine our 95% confidence intervals with our systema
errors, then we get about the same error as reported there
combining the data in Tables I and II we list our best es

TABLE IV. Estimates of branch exponentr.

d r(P) r(B) Best estimates

2 0.7391~10!~81! 0.7365~20!~81! 0.73860.010
3 0.6548~10!~48! 0.6507~10!~50! 0.65360.006
4 0.6091~10!~70! 0.6054~10!~11! 0.60760.006
5 0.5793~10!~110! 0.5758~10!~45! 0.57860.009
6 0.5548~19!~120! 0.5528~10!~140! 0.55460.015
7 0.5268~10!~31! 0.5338~13!~150! 0.53060.011
FIG. 1. Plot of log10@(Xn1k2Xn)/kXn1k#
against log10 n for Xn5^Sn&

2/^Rn
2& in two and

seven dimensions.
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FIG. 2. Plot of log10@(Xn1k2Xn)/kXn1k#
against log10 n for Xn5^Pn&/^Bn& in two and
seven dimensions.
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mates forn in Table III ~the error bars are taken to be th
sum of our statistical and systematic errors!. Notice that the
error bars in the tables are largely due to systematic err
the 95%-confidence intervals make only a small contri
tion.

The data collected for mean longest paths and m
branch sizes were analyzed in a fashion similar ton above,
with models corresponding to those in Eqs.~4!–~6!. We list
the results in Table IV and our best estimates are stated in
third column of that table. Similarly to the case forn, we find
that regression by the model in Eq.~6! fails to give a con-
sistent value forD and we believe that, at best, only an e
fective exponent is seen. The values ofr decreases with
increasing dimensions to its mean field value of1

2 as ex-
pected@10#, indicating that the degree of branching in th
tree increase. Finally, we were unable in two cases to
form a satisfactory two-parameter fit with the model in E
~4!; these are for the mean span^S& and the mean longes
path ^P& in seven dimensions. In those cases we procee
by considering only the regressions from Eqs.~5! and ~6!.

III. AMPLITUDE RATIOS AND THE CONFLUENT
EXPONENT

We now turn our attention to the amplitude ratios defin
in Eq. ~3!. By assuming that̂Rn

2&5ARn2n(11BRn2D) and
^S&5ASnn(11BSn2D), it seems natural to propose that

^Sn&
2

^Rn
2&

.
AS

2

AR

~11BSn2D!2

~11BRn2D!
.

AS
2

AR
~11Cn2D1¯ !,

where C is a constant. By plotting the ratiôSn&
2/^Rn

2&
againstn2D, it should be possible to extract an estimate
the ratioAS

2/AR of the amplitudes. Ideally, a nonlinear thre
parameter fit of the form
s;
-

n

he

r-
.

ed

d

f

^Sn&
2

^Rn
2&

5
AS

2

AR
1C8n2D, ~7!

with AS
2/AR , C8, andD as parameters, should be perform

to find best estimates of the ratio of amplitudes and the
ponentD. This approach failed to give consistent results a
we will first investigate the presence of a confluent term
our data. It is generally difficult to observeD in statistical
Monte Carlo data. We decided to study a quantityXn , which
will be equal to a dimensionless ratio of our measureme
For example, we will takeXn5^Sn&

2/^Rn
2&, ^Pn&/^Bn&,

^Sn
2/Rn

2&,... . In all these cases, our basic assumption is t

Xn5C01C1n2D,

whereC0 is the amplitude ratio associated with the dime
sionless ratioXn . If k!n, then, if higher-order correction
are ignored, it can be shown that

S Xn1k2Xn

kXn1k
D'C9n2D21. ~8!

We test this relation in Figs. 1 and 2, which are graphs
log@(Xn1k2Xn)/kXn1k# against logn for Xn5^Sn&

2/^Rn
2& ~Fig.

1! andXn5^Pn&/^Bn& ~Fig. 2!, where we display the data fo
only d52 and 7. These graphs support the approximation
Eq. ~8! and the slope of the best straight line through t
points is an estimate of2D21.

TABLE V. Estimates ofD.

d D

2 0.6560.20
3 0.5460.12
4 0.4660.11
5 0.4060.14
6 0.3460.13
7 0.3560.07
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TABLE VI. Amplitude ratios.

d 2 3 4 5 6 7

^Sn&
2

^Rn
2&

7.6203~37! 6.3123~17! 5.7255~20! 5.3020~31! 5.0413~55! 4.7511~65!

KSn
2

Rn
2L 7.8907~83! 6.5050~40! 5.8564~46! 5.3796~76! 5.071~11! 4.780~15!

^Pn&

^Bn&
3.9639~27! 3.9899~19! 4.0216~23! 4.0670~19! 4.1087~18! 4.1588~30!

^Sn&

^Al1&
3.082~41! 3.017~32! 3.057~32! 3.062~33! 3.088~37! 3.082~38!

^En&

^Sn&
0.9428~28! 0.9421~18! 0.9397~20! 0.9493~19! 0.9593~24! 0.9750~21!

^Rn
2&

^l1&
1.2438~48! 1.4398~26! 1.6134~25! 1.7883~31! 1.9493~27! 2.0839~27!
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We computedD for different amplitude ratios in eac
dimension ~we consideredXn5^Sn&

2/^Rn
2&,^Sn

2/Rn
2&,^Pn&/

^Bn&,^Sn&/^Al1&,^En&/^Sn&,^Rn
2&/^l1&). Our estimates from

each of these ratios give values forD that are more or less
consistent in each dimension. The average over these
mates was taken as our best estimate forD; the stated error
bar is equal to one-half the difference between the larg
and smallest estimates obtained in the various fits.~We did
not measure a statistical error since covariances were
measured.!

Our estimates are generally smaller than those obta
for animals by Adleret al. @13# ~by using Pade´ approxima-
tions to exact enumeration data!. Their data suggest thatD
'0.8560.10 in two dimensions, 1.360.2 in three dimen-
sions, and 0.860.2 in four dimensions, quite different from
the results in Table V. On the other hand, their results in fi
to seven dimensions are more consistent with ours. Figur
and 2 clearly signal the presence ofD in our data. Although
we ignored higher-order corrections in Eq.~8!, our data also
included large trees, where we expect the dominant cor
tions to be the confluent term~higher-order terms deca
more quickly!. If we assume the values ofD in Table V, then
we can estimate the amplitude ratios. We report those res
in Table VI.

IV. CONCLUSIONS

We have discussed the critical exponents and unive
amplitude ratios of lattice trees in dimensions 2–7. The m
ric exponentn was computed by analyzing data obtain
from the mean square radius of gyration, the mean span
mean end-to-end distance of the longest path, the larges
genvalue of the radius of gyration matrix, and its determ
nant. The data collected from mean longest paths and m
branch sizes were analyzed to estimate the branch expo
r. These exponents were estimated using a weighted le
squares analysis for three different models@Eqs. ~4!–~6!#.
The best estimates for them were taken from successful
parameter fits, with their associated confidence intervals
both cases, we found that the regression by the model in
sti-

st
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ed

e
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al
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ei-
-
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ent
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~6! fails to give a consistent value forD and we assume tha
only an effective exponent is seen. In addition, we found t
systematic errors arise in estimates due to inadequate mo
and that these errors can be larger than statistical errors

An important observation from our results is that a siza
systematic error could be present in the best estimate
exponents in models of self-avoiding walks, lattice trees, a
animals. By estimating an exponent from a number of diff
ent models that account for finite size scaling corrections
to a confluent exponent, we found that acceptable fits can
found with a stated statistical confidence interval in mo
than one model. However, the results from different mod
are inconsistent. We interpret this as indicative of the pr
ence of a systematic error or, equivalently, that the best
timate obtained in a least-squares analysis is conditioned
the model and that the statistical confidence interval can
account for this. Indeed, the statistical confidence inter
was in many cases much smaller than the change in the v
of the best estimate if a different model was assumed;
take this change to be an estimate of an~unknown! system-
atic error in our estimates and a final error bar wasmostly
due to this error rather than to the statistical error.

We estimatedD for different amplitude ratios in each di
mension using Eq.~8!. The average over these were taken
our best estimates forD, with a stated error bar that is one
half the difference between the largest and the smallest
mates obtained. Assuming the values ofD in Table V, we
estimated the amplitude ratios from Eq.~7!. Our results are
very different from previous estimates of the confluent c
rections in a number of studies in dimensions 2–4, but
dimensions 5–7 we have estimates that are similar to th
in Ref. @13#. The systematic decrease inD with increasing
dimensions and the graphs in Figs. 1 and 2 support the
merical values in Table V and we view these estimates a
big improvement over previously stated estimates in the
erature.
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