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Critical exponents and universal amplitude ratios in lattice trees
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Lattice trees are generated by a cut-and-paste algorithm to collect data to estimate critical exponents. We are
particularly interested in the effects of corrections to scaling on the estimated values of the exponents and we
find that a sizable systematic error is introduced if corrections are ignored. Indeed, our final error bars are
largely due to systematic errof@hich we estimate by using different empirical finite size formulas as models
for our data, while statistical error bars contribute only a small fraction. This fact suggests that the estimate of
a critical exponent for lattice trees by fitting Monte Carlo data to an empirical finite size formula may ignore
a sizable systematic error. The exponentand p are estimated in dimensions 2—7. In addition, the exponent
A (associated with confluent correctigrnis estimated and the universal amplitude ratios associated with scaling
in the mean square radius of gyration and the mean span and with the mean longest path and mean branch size
are computed.S1063-651X98)05209-X

PACS numbsd(s): 02.70.Lq, 64.90+b

I. INTRODUCTION 1 d
Sh=g > max [x(vi)—x(v))l,

The numerical and theoretical study lattice treespro- K=1 1<ij<n
vides a natural model for calculating the properties of
branched polymers in dilute solution. Lattice trees belong tovherexy(v;) is the kth coordinate of theth vertex in the
the same universality class as lattice aninfals3] and the  tree.
critical exponents of lattice trees will therefore be the same The intrinsic structure of a lattice tree may be imagined as
as for lattice animals. In this same universality class are sutfhe longest pathin the tree, decorated with “branches.”
critical percolation clusterist]. For a description of the phase The mean sizes of the longest path and branches can also be
diagram of interacting lattice trees and animals see the worRbserved; we define these by the following.
of Gaunt and Flesif5], Flesia and Gaunii6], Flesiaet al. (@ A path P;; with first and last vertices; andv; in a
[7], Janse van Rensburg and Madf8$ and Madras and lattice tree is the shortest walk in the tree from vertgxo
Janse van Rensbuf§)]. vertexv;. The longest path is defined by

Lattice trees are connected acyclic subgraphs of the lat-
tice, with vertices representing monomers and edges the Pn=max{|Pij|},
bonds between monomers. There are powerful Metropolis h
Monte Carlo algorithms for the simulation of lattice tr¢&% . )
and these can be used to estimate some observables assd¢iere|P;;| is the number of edges in the shortest walk from
ated with a uniformly weighted ensemble of lattice trees ofVertexi to vertexj [17,18. _
fixed number of vertices. In particular, one may wish to es- (P) Letebe an edge in a tre§ thenT-e consists of two
timate the “mean size” of a tree or make estimates of quanSuPtreesone can be a single vertexhe smaller of these is
tities that measure the internal structure of a teh as the C?‘HEd a branch. The number of edges in the bra_nch is its
number of edges in a longest patfihe size of a lattice tree  SiZ€, denote®,, . The ensemble averagB,,) is the uniform
can be measured in several ways. We used the followingVerage over all possible choicesadfi T and over all lattice
observables to estimate the size of lattice tr@disaverages €€s. _ .
are over uniformly weighted lattice trees with a fixed number  The end-to-endEuclidean distance of the longest path
of vertices and we assume that the tree contaimertices. should yet define another quantity that can be used to define

(i) The mean square radius of gyration of a lattice tree i@ Sizé of the tree; this distance should also define a length
defined by scale in the tree and we define it as follows. Bgt be the

longest path in the tre& and let its end vertices be, and
10 v;j. The end-to-end distance of the longest path in the tree is
2_ i i i
Rn_ﬁ .21 [r(vi)—rcl?, the Euclidean distance betweepanduv;
En=lr(vi)—r@)l>.
wherer (v;) is the position vector of thigh vertex of the tree ) N .
andr . is the position vector of the center of mass of the tree. It is commonly accepted that these quantities scale with
The ensemble averad®?) is the uniform mean oR? over ~ @S
all trees withn vertices. ) - ,
(i) The mean span of a lattice tree is defined by (RR)~n%", (Sy)~(Ep)~n", D
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(Pn>~n”, <Bn>~nfﬂ i)
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TABLE |. Estimates of metric exponent(R?), »(S), and
v(E).

where v, p, and e are critical exponents. It is believed that
p=¢€ and we will accept this as fact in this pagdQ]. The

v(R?)

v(S)

v(E)

exponenty is the metric exponentlt has valuej in three
dimensiong11] and its mean field value i$[12]. The ex-
ponentp has the mean field valug[10].

II. ESTIMATING THE CRITICAL EXPONENTS

~NOoO O WN |

In this paper we examine the above scaling relations in

0.6375%10)(64)
0.493210)(65)
0.410210)(74)
0.351910)(29)
0.312410)(53)
0.286610)(84)

0.650014)(200)
0.511113)(180
0.434212)(240)
0.385115)(280)
0.352722)(420)
0.300010)(16)

0.645813)(56)
0.497q10)(35)
0.410110)(49)
0.352810)(35)
0.314910)(110
0.289715)(140)

dimensions 2—7 using the Monte Carlo approach for lattice
trees developed in the paper by Janse van Rensburg and Ma-
dras[10]. In particular, we are interested in obtaining high-
quality estimates o andp from the expressions in Eqgl)
and(2), as well as estimates of the eigenvalues of the mea
square radius of gyration tensor. We will indicate the mea
eigenvalues of this tensor Ky ;), wherei=1 will indicate
the largest and=d the smallest ird dimensions. The deter-
minant of this matrix also scales with in d dimensions it
should scale as??” and we will collect data on it as well. In
the second instance, we will also be interested in the univer:
sal amplitude ratios for lattice trees, in particular, we will
consider ratios of the general form

)\ (Zw)
<v_n>' AL ®

mators for the parameters in the model, including the expo-
nents, and if the autocorrelation time of the Markov chain is
hnown, then a statistical confidence interval can be assigned
see the appendix in RdfL9] for detailg. On the other hand,

he results from such an analysis are conditioned on the as-
sumed model and a different model may give a different best
estimate. This observation is indicative of the presence of a
systematic error in the best estimate and if we knew the
correct model, then it would be possible to correct for it. In
our case, this is not possible and we had to find a way of
estimating a systematic error in our estimates by trying a few
related, but different, model@ach of which accounts for
finite size effects in a different wayThe absolute maximum
difference in the results from the different models will be
assumed to indicate the size of a possible systematic error.

] ] It is known that a “confluent correction” is present in the
whereZ, and Y, WI|| be _observables of Ia_ltt|ce trees mea- scaling assumptions in Eqél) and (2) and we will pay
sured by the algorithm with the same scaling exponents. Wgaicylar attention to the effect this confluent correction may

will be mostly interested in cases WheZq=Sﬁ with Y,
=Rﬁ and Z,=P, with Y,=B,. In addition, we will also
consider ratios involving other quantities, such(&s) and

have on the values of estimated exponents. The confluent
correction modifies Eq.(1) to (R2)=An?’(1+Bn%),
whereA is the confluent exponent. The exponents and am-

the mean largest eigenvalue of the radius of gyration matripjitudes were estimated using a weighted least-squares

(N1)-

analysis: We tracked the least-squares efrdvich is distrib-

We sampled along a Markov chain in the state space ofited as gy? statistiy as a measure of goodness of fit, while
lattice treeguniformly weighted using a cut-and-paste algo- we discarded data points at the smallest values.oiVe

rithm in two to seven dimensiond0], while we collected

accepted a fit as good if the? statistic is acceptable at the

data on the mean square radius of gyration, the mean spags9, |evel. We tried this procedure for several models, in-

the mean end-to-end distance of the longest path, the meafding

longest path, the mean branch size, the mean square radius of
gyration matrix, and its mean largest eigenvalue. Runs were
performed on trees of sizes from=25 to 2000 edges, while
data were taken eveny steps for a sample size of 50 000
(thus a total of 50 009 attempted iterations of the algorithm
was performed for each value nf. Our immediate motiva-
tion is to obtain high-quality data for the estimation of the
critical exponents andp in dimensions 2-7. In the case of
the exponenw we will attempt to obtain estimates for com-
parison with the results from series analysis of aninha
and Monte Carlo of lattice trees in dimensions Z44]. In

log(R?)=log A+2v log n, (%)
log(R?=log A+2v log n+Bn %5, (5)
log(R?)=log A+2v log n+Bn~2. (6)

The first two model$Eqgs.(4) and(5)] are linear models that
can be solved using standard numerical proceddreshe

TABLE II. Estimates of metric exponent(\ ) and v(det).

the case of the exponeptwe hope to improve on the results

in two to four dimensions if10] and to compute the value
of this exponent in dimensions 5-7.

d

Estimates of exponents from data collected by sampling 2
along a Markov chain with a Metropolis Monte Carlo algo- 3
rithm is usually done by assuming a model that accounts for 4
finite size corrections to scalingnd based on some theoret- 5
ical insights gained from scaling theory or the renormaliza- 6
tion group. Within the reference frame of the assumed 7

v(\y) v(ded
0.637211)(58) 0.637812)(52)
0.493610)(86) 0.492610)(55)
0.410913)(19) 0.406910)(21)

0.352112)(84)
0.309811)(190
0.285710)(68)

0.351610)(23)
0.314810)(99)
0.294610)(180

model, a least-squares analysis can be used to find best esti
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TABLE lll. Best estimates of metric exponent
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TABLE IV. Estimates of branch exponept

d vy d p(P) p(B) Best estimates
2 0.642+0.010 2 0.739110)(81) 0.736520)(81) 0.738:£0.010
3 0.498-0.010 3 0.654810)(48) 0.650710)(50) 0.653+0.006
4 0.415:0.011 4 0.609110)(70) 0.605410)(11) 0.607+0.006
5 0.359-0.011 5 0.579310)(110 0.575810)(45) 0.578+0.009
6 0.321+0.019 6 0.554819)(120 0.552810)(140 0.554+0.015
7 0.291+0.011 7 0.526810)(32) 0.533813)(150 0.530+0.011

second model we assumed thiat0.5). The third model searches a four-dimensional parameter space for a global
required a nonlinear analysis, which was done using a quasiminimum in the least-squares error. Since the parameter
Newton procedure, withlA a parameter of the model. The space is so large, one may expect that the procedure may
absolute differences in the estimates of exponents and ampliave difficulty converging to a global minimum, especially if
tudes from these analysis were used as estimates of a sythere are random statistical uncertainties in the data produced
tematic error in our result@nd is presumably due to correc- by the the Monte Carlo simulation.

tions to scaling that our models could not accounj.fdhe The three models produced different estimatesi/fas is

best estimates for exponents and amplitudes were taken froapparent in Tables | and Il. Indeed, this model dependence
successful two-parameter fits, with their associated confillustrates the inadequacy of these models in determiming
dence intervals. Our analysis could not in any case settle om particular, corrections to scalingre important in deter-

a consistent value for the exponehtand we will assume mining v and ignoring them introduces a systematic error
that only an effective exponent is observgide values ofA  that oftenexceedshe statistical errors computed from the
varied between 0.35 and 0.75 in two dimensions, encompassegressions. We draw attention to this since the standard ap-
ing the estimates in the work by Margolina, Family, andproach to estimating exponents from numerical data often
Privman[14], Adler et al.[13], Ishinabg 15] and Gonalves  focuses on only one model for a single quantiuch as the
[16]). Our estimates for are tabled in Table I. Each entry is end-to-end length While this approach is often out of ne-
presented as the best estintatatistical error(systematic er-  cessity, it is clearly inadequate if a “true” error bar is to be
ror). assigned.

The exponentr can also be obtained by analyzing data The exponent was also computed by Goalwes by the
obtained from the largest eigenvalue of the radius of gyratioiMonte Carlo method =0.637+0.010)[16]. Our statistical
matrix or from its determinant. We analyzed these measureerror bars are roughly a factor of 10 better than this, but the
ments similarly to the data presented in Table | and we lissystematic errors in Tables | and Il are roughly comparable
our results in Table Il. It turned out to be significantly more to this error. Estimates of in dimensions 2—7 were also
difficult to find satisfactory fits to the determinant of the made by Adleret al. [13] using a series analysis for lattice
radius of gyration matrix: Indeed, we were generally unableanimals. Our statistical confidence intervals are also roughly
to find satisfactory(acceptable at the 95% leyefour-  a factor of 10 smaller than the results in that paper, and if we
parameter fits to Eq(6) in this case[This is perhaps not combine our 95% confidence intervals with our systematic
surprising; the analysis using E¢p) is a four-parameter errors, then we get about the same error as reported there. By
nonlinear model and involves a numerical procedure thatombining the data in Tables | and Il we list our best esti-
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mates forv in Table Il (the error bars are taken to be the <Sn>2 Ag
sum of our statistical and systematic erjoidotice that the @: A—+C’H*A, (7
n R

error bars in the tables are largely due to systematic errors;

t_he 95%-confidence intervals make only a small contnbu-Wi,[h Aé/AR, C', andA as parameters, should be performed
tion. to find best estimates of the ratio of amplitudes and the ex-

The data collected for mean longest paths and meag,nenta. This approach failed to give consistent results and
branch sizes were analyzed in a fashion similav@bove, \ye wil first investigate the presence of a confluent term in

with models corresponding to those in E¢$)—(6). We list  oyr data. It is generally difficult to obsends in statistical
the results in Table IV and our best estimates are stated in thonte Carlo data. We decided to study a quantity which
third column of that table. Similarly to the case florwe find  will be equal to a dimensionless ratio of our measurements.
that regression by the model in E@) fails to give a con-  For example, we will takeX,=(S,)%/(R2), (P, )/(B,),

sistent value folA and we believe that, at best, only an ef- (s2/R2) . In allthese cases, our basic assumption is that
fective exponent is seen. The values pfdecreases with
increasing dimensions to its mean field value 306s ex- Xp=Co+Cyn~4,

pected[10], indicating that the degree of branching in the
tree increase. Finally, we were unable in two cases to pemwhereC, is the amplitude ratio associated with the dimen-
form a satisfactory two-parameter fit with the model in Eq.sionless ratioX,,. If k<n, then, if higher-order corrections
(4); these are for the mean spé8) and the mean longest are ignored, it can be shown that

path(P) in seven dimensions. In those cases we proceeded

by considering only the regressions from E@s.and (6). Xn+k_xn) ~C'"n~A-1 @)
kxn+k
. AMPLITUDE RATIOS AND THE CONFLUENT We test this relation ir? Figs. 1 and 2, Whiczh arg graphs of
EXPONENT logl (Xn+k—Xn)/kX+i] @gainst logn for X, =(S,)“/(R7) (Fig.

1) andX,=(P)/{B,) (Fig. 2), where we display the data for

donly d=2 and 7. These graphs support the approximation in
Eq. (8) and the slope of the best straight line through the
points is an estimate of A—1.

We now turn our attention to the amplitude ratios define
in Eq. (3). By assuming tha{R2)=Agn?"(1+Bgn~*) and
(S)=Agn"(1+Bgn~%), it seems natural to propose that

TABLE V. Estimates ofA.

(Sn? AZ(1+Ban 4 Al N d A
(R Ar (1+Brn™%)  Ag 2 0.65:0.20
3 0.54£0.12
. . ) 212 4 0.46+0.11
where C is a constant. By plotting the rati¢S,)/(R?) 5 0.40+0.14
againstn—2, it should be possible to extract an estimate of 6 0.34-0.13
the ratioAZ/Ag of the amplitudes. Ideally, a nonlinear three- 7 0.35+0.07

parameter fit of the form
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TABLE VI. Amplitude ratios.

d 2 3 4 5 6 7
2
% 7.620337) 6.312317) 5.725520) 5.302@31) 5.041355) 4.751165)
<§,21> 7.8907183) 6.505@40) 5.856446) 5.379676) 5.07111) 4.78015)
égni 3.963927) 3.989919) 4.021623) 4.067Q19) 4.108718) 4.158830)
(& 3.08241) 3.01732) 3.05132) 3.06233) 3.08837) 3.08238)
(ny)
ii:; 0.942828) 0.942118) 0.939720) 0.949319) 0.959324) 0.975@21)
2
2?”; 1.243849) 1.439826) 1.613425) 1.788331) 1.949327) 2.083927)
1

We computedA for different amplitude ratios in each (6) fails to give a consistent value fdr and we assume that
dimension (we consideredX,=(S,)?/(R2),(S¥R2),(P,)/  only an effective exponent is seen. In addition, we found that
<Bn>v<Sn>/<\/)\—1>1<En>/<sn>y<Rﬁ>/<)\l>)- Our estimates from Systematic errors arise in estimates due to inadequate models
each of these ratios give values firthat are more or less and that these errors can be larger than statistical errors.
consistent in each dimension. The average over these esti- An important observation from our results is that a sizable
mates was taken as our best estimateAfpthe stated error Systematic error could be present in the best estimates of
bar is equal to one-half the difference between the largegtXponents in models of self-avoiding walks, lattice trees, and
and smallest estimates obtained in the various itée did  animals. By estimating an exponent from a number of differ-
not measure a statistical error since covariances were n&ht models that account for finite size scaling corrections due
measured. to a confluent exponent, we found that acceptable fits can be

Our estimates are generally smaller than those obtainel@und with a stated statistical confidence interval in more
for animals by Adleret al. [13] (by using Padexpproxima- than one model. However, the results from different models
tions to exact enumeration dataheir data suggest that are inconsistent. We interpret this as indicative of the pres-
~0.85+0.10 in two dimensions, 1:80.2 in three dimen- €nce of a systematic error or, equivalently, that the best es-
sions, and 0.80.2 in four dimensions, quite different from timate obtained in a least-squares analysis is conditioned on
the results in Table V. On the other hand, their results in fivedhe model and that the statistical confidence interval cannot
to seven dimensions are more consistent with ours. Figuresaccount for this. Indeed, the statistical confidence interval
and 2 clearly signal the presence®in our data. Although ~Was in many cases much smaller than the change in the value
we ignored higher-order corrections in E@), our data also  ©f the best estimate if a dlffgrent model was assumed; we
included large trees, where we expect the dominant corredake this change to be an estimate of(anknowr) system-
tions to be the confluent terrthigher-order terms decay atic error in our estimates and a final error bar wasstly
more quickly. If we assume the values dfin Table V, then  due to this error rather than to the statistical error.

we can estimate the amplitude ratios. We report those results We estimated\ for different amplitude ratios in each di-
in Table VI. mension using Eq:8). The average over these were taken as

our best estimates fak, with a stated error bar that is one-

half the difference between the largest and the smallest esti-
IV. CONCLUSIONS mates obtained. Assuming the valuesfofn Table V, we
aqstimated the amplitude ratios from E{). Our results are

We have discussed the critical exponents and univers very different from previous estimates of the confluent cor-
amplitude ratios of lattice trees in dimensions 2—7. The met- y b

ric exponenty was computed by analyzing data obtainedrections in a number of studies in dimensions 2—4, but in
from the mean square radius of gyration, the mean span, thdelmensmns 5—-7 we have estimates that are similar to those

; in Ref.[13]. The systematic decrease Mwith increasin
mean end-to-end distance of the longest path, the largest edimensi[on:]s and th}é graphs in Figs. 1 and 2 support th?a nu-

genvalue of the radius of gyration matrix, and its Cletermi'merical values in Table V and we view these estimates as a
nant. The data collected from mean longest paths and mean . vement over previously stated estimates in the lit-
branch sizes were analyzed to estimate the branch exponen9 provement over previously stated estimates €

p. These exponents were estimated using a weighted |ea§_rature.
squares analysis for three different modgigs. (4)—(6)].

The best estimates for them were taken from successful two-
parameter fits, with their associated confidence intervals. In E.J.J.v.R. was supported by an operating grant from

both cases, we found that the regression by the model in EINSERC (Canada
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